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Abstract—A fully integrated model of coupling between the
electromagnetic field and multiconductor cabling is developed
using the transmission-line matrix (TLM) method. In this model,
the multiconductor cables are represented by multiconductor
transmission lines which connect to the general TLM mesh. A
basic TLM model of straight multiconductor lines is developed
first, followed by the derivation of a general multiconductor junc-
tion model suitable for describing more complex configurations.
Sample numerical results are presented to confirm validity and
efficiency of the model.

Index Terms—Multiconductor transmission lines, time-domain
analysis, transmission-line matrix methods.

I. INTRODUCTION

V ERY OFTEN, particularly in electromagnetic compati-
bility studies, there is a need to model multiconduc-

tor cables which couple with the electromagnetic field. The
main difficulty, as far as time-domain transmission-line matrix
(TLM) and finite-difference time-domain (FDTD) method are
concerned, is that it can be prohibitively inefficient to model
the fine detail of closely spaced conductors in a large volume
of space such as the interior of an equipment cabinet or room.
A common technique used to incorporate multiconductor
cables into differential time-domain techniques is the so-
called separated solution [1], in which the multiconductors are
treated separately from the rest of the problem, allowing for
field coupling to the wires by introducing equivalent sources
derived from a knowledge of the incident field. Although this
method is simple, it involves several restrictions, the most
important being that any electromagnetic interaction of the
wires with the rest of the structure must be negligibly small.

Recently, an integrated solution, allowing for two-way
coupling between the field and single thin wires, has been
introduced in the TLM [2], [3]. Here, the propagation of
signals along the wire is modeled by using special wire
networks constructed by additional TLM link and stub lines.
Such wire networks are interfaced with the ordinary three-
dimensional condensed TLM nodes during the usual time-
stepping procedure.

In this paper, we extend the TLM integrated thin-wire
model to allow for modeling of multiconductor cables. We
choose to regard the multiconductor transmission lines used
in the TLM model asvector lines, i.e., lines which carry
a signal, which is an -dimensional vector, rather than a
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scalar function of time. This terminology is concise and
helps to distinguish the TLM multiconductor transmission
lines from the multiconductor cables being modeled. We
consider the possible network connections (shunt and se-
ries) between vector lines and between vector and scalar
lines before presenting the integrated TLM multiconductor
cable model. The development of a basic model of straight
multiconductor lines is presented first, followed with the
derivation of a general multiconductor junction model, which
can be used to model more complex configurations found
in practice. Validity, efficiency, and versatility of the new
model are tested by modeling electromagnetic compatibility
of equipment boxes and the magnetic field around a solenoid.

II. BASIC TLM M ULTICONDUCTOR MODEL

A general multiconductor line consists of a number of
parallel conductors of arbitrary cross section, but uniform in
the third dimension. The state of an conductor line
(carrying TEM or quasi-TEM modes only, and neglecting the
common mode), can be specified byvoltages and currents
at each point along its length. It is convenient to assume that
the voltages, chosen to specify the state of the line, are the
voltages of of the conductors, with respect to the th
(reference) conductor, while the currents are the currents on
the same conductors in the direction of propagation. These
currents and voltages can be represented by twocomponent
vectors, and , while the line can be characterized by
per-unit-length capacitance and inductance matricesand
[4].

Following the approach used in the TLM model of a
thin single wire [2], we can assume that one part of the
required per-unit-length capacitance and inductance of an-
conductor line is already modeled by the single column of
TLM cells through which it passes. This can be accounted
for in a TLM model by placing a fictitious cylinder sheath
around the multiconductor line, which can be taken as the
reference conductor, or th conductor line. Its diameter
is the effective diameter of a column of metal-filled TLM
cells, which is, unfortunately, different for capacitance and
inductance, with the “capacitance shell” radius being
greater than the “inductance shell” radius [2]. Notice that
common-mode currents are accounted for in this model—the
body of the TLM mesh refers any distant return paths to the
sheath, while including all the effects of intervening metal or
dielectric structures and sources.

The basic parameters, therefore, needed for the TLM model
are , the distributed-capacitance matrix for the

-conductor cable placed inside the radius reference con-

0018–9480/98$10.00 1998 IEEE



2432 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

Fig. 1. A TLM vector line.

Fig. 2. Shunt connection of three two-conductor TLM vector lines.

ductor, and , the distributed-inductance matrix for
the -conductor cable placed inside the radius reference
conductor. Calculation of and requires solution of a
two-dimensional electrostatic problem in the cross section of
the multiconductor line. In the general case, this cannot be
done analytically, but well-defined numerical techniques are
available [4].

In order to facilitate integrated modeling of multiconductor
structures in the TLM, we need to introduce new TLM
elements carrying a signal which is-dimensional vector. As
explained in Section I, we regard these lines as TLM vector
lines (as opposite to ordinary or scalar TLM lines) and they can
be eithervector link linesor vector stub lines. An -element
TLM vector line (link or stub) is depicted in Fig. 1 and is
characterized by an impedance matrix (or
admittance matrix ), while its state is described by-
element incident and reflected voltage pulse vectorsand ,
respectively. Possible network connections, shunt and series,
between vector lines can be formulated directly from the first
principles.

The shunt connection between-element vector lines can
be physically constructed by connectingcorresponding con-
ductors in junction points and having all vector lines sharing
the same reference conductor. This is shown in Fig. 2 in the
case of three two-element vector lines. In the general case of

-element vector lines (labeled by ), the total
current into the junction must be the zero vector, i.e.,

(1)

while the total voltage at the junction is the sum of incident
and reflected voltages

for all (2)

Fig. 3. Series connection of three two-conductor TLM vector lines.

Combining (1) and (2), we can describe a total voltage vector
in terms of incident voltage vectors only as

(3)

and, hence, calculate reflected voltage pulses as

for all (4)

The series connection between vector lines can be con-
structed by using 1 : 1 transformers at the end of each line
(between the reference conductor and the otherconductors),
to give two conductor ports not sharing the same reference
conductor, and then series connecting the corresponding ports
of all the lines. This is shown in Fig. 3 in the case of three
vector lines with two conductors. In the general case of

-element vector lines, the total voltage around the junction
is the zero vector, so

(5)

while the total current around the junction is

for all (6)

Combining (5) and (6), we can express total current vector in
terms of incident voltage vectors only as

(7)

and, hence, calculate reflected voltage pulses as

for all (8)

The principal TLM model of a segment of-conductor
cable is shown in Fig. 4. The cable and enclosing fictitious
cylinder sheath form an -conductor transmission line,
which is modeled using a circuit of-element vector lines.
The cable is coupled to the external environment at the center
of each TLM cell by a break in the sheath. The vector link
lines of the impedance matrix can be chosen to model the
total required capacitance of the wire segment of length.
To preserve the time synchronism of the TLM pulses imposed
by the time step , we must have ,
which gives

(9)
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Fig. 4. TLM model of a multiconductor segment.

The inductance modeled by the vector link lines
is normally insufficient [2], and a vector inductance stub of
the impedance , connected in series to vector link lines, is
required to make up the required total inductance given by

from which it follows that

(10)

The -element vector inductance stub is not shown in the
diagram due to the difficulty of drawing multiconductor series
connections.

It can be seen from Fig. 4 that the coupling between the
multiconductor cable model and the external environment is
modeled using a voltage source in the reference line. The
voltage source represents the electric-field component coupling
with the multiconductor cable. Its amplitude and the
resistance can be calculated from the incident voltage pulses
and characteristics admittances of the relevant node’s link and
stub lines [5].

It is noted that the current in the reference conductor
is minus the sum of the currents in the other conductors, i.e.,

, where is the single row matrix
and is the current through vector link lines. Similarly, the
voltage drop on the reference conductor affects equally
all the other lines, which can be described as ,
where is the single-column matrix, the transpose of.
Since and , we write

which implies that a source in the reference line is equivalent
to a vector source of and impedance matrix

connected in series with the other vector lines.
(Note that is a vector with all elements equal to and

is a singular matrix with all elements equal to.)
Therefore, the model depicted on Fig. 4 can be realized as

a series connection of four vector lines (two link lines, a stub,
and a source). Using (7), we can express in terms of
incident voltage pulses as

Using (8), voltage pulses reflected to the vector link lines (
and ) and the vector stub line () are calculated as

(11)

(12)

(13)

(a) (b)

(c) (d)

Fig. 5. Possible multiconductor configurations. (a) Multiconductor bend. (b)
Branching-off. (c) Three T-junctions. (d) Combined T-junction, straight wire,
termination, and bend.

Finally, the current flowing through the reference conductor
is used to update voltage pulses on the ordinary

node link and stub lines, following the method described in [5].

III. TLM M ULTICONDUCTOR JUNCTION MODEL

In many situations, the model of straight multiconductor
cables, described in Section II, may not be sufficient. Exam-
ples of when a more general model is required are shown
in Fig. 5. They include multiconductor bends, branching-off
configurations, multiconductor junction connections, discon-
tinuation of some conductors or even arbitrary combinations of
these features. As before, when modeling these configurations
using the TLM, there will always be a common reference
conductor—fictitious cylinder—which divides and follows ev-
ery multiconductor branch. This makes it possible to devise
a general multiconductor junction model based on the shunt
connection of vector lines.

In a general multiconductor junction configuration there will
be junction points, where is regarded as the order of the
junction. In Fig. 5, we have for (a)–(c) and
for (d). Every junction point may connect up to six single
conductors coming from six different faces of a rectangular
cell, referred to as “multiconductor limbs.” A junction must
be described by -element vectors and matrices of size .
However, quantities local to a particular limb, such as incident
voltages and impedance matrices of the vector link lines, may
already be described by vectors and matrices of order ,
where represents the number of conductors actually present
in that limb. The relative numbering of conductors local to a
particular limb may, therefore, differ from that used for the
junction as a whole. Thus, to obtain junction quantities of
the order , we need to reorder rows/columns of the local
limb quantities and insert zeros in the rows/columns related
to the nonexisting conductors. Such a transformation can be
accomplished by using a limb permutation matrixof size

, which contains elements if the th limb
conductor connects to theth junction point, and
otherwise. A permutation matrix must satisfy ,
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Fig. 6. Thevenin equivalent of multiconductor junction in the TLM (only a
loop corresponding to limbs in thex-direction is shown ).

where is a transpose of and is a unitary matrix of
size .

In general, the transformation of a vectorof size is
performed by multiplying it with a permutation matrix (size

) to obtain an expanded vector of the size .
The original vector is restored from the expanded one by
multiplying it with , i.e., . A
matrix of size can be transformed to a
matrix by applying . The original matrix is restored
from the expanded form by applying a reverse transformation,
i.e., .

The Thevenin equivalent of a general multiconductor junc-
tion model is shown in Fig. 6. For simplicity, only part of
the circuit, corresponding to the limbs in the-direction,
is shown. This subcircuit is connected to the other two
similar subcircuits, for and -directed limbs, via a multipoint
junction, which is denoted by . A transformer is introduced
into each subcircuit to permit connection of the reference
conductors at the center of the TLM node. The limbs are
denoted by two letters, the first () indicating whether the
limb is associated with the higher () or lower ( ) value of the
coordinate axis, and the second indicating the coordinate
axis, i.e., .

In the model from Fig. 6, every multiconductor limb is
represented by the combination of vector link line and a vector
stub line, connected in series, and is described by a single
Thevenin equivalent circuit, (e.g., , ). The equivalent
limb voltage vectors are then defined as

(14)

with indexes , , and where are
incident voltage pulses from vector link lines, are incident
voltage pulses from vector stub lines, and are permutation
matrices discussed above. For completely absent limbs,
is set to a null vector.

The corresponding limb admittance matrices are defined
as

(15)

where are impedance matrices of vector link lines,
which are calculated as in the straight segment model, using
(9), while are impedance matrices of vector stub lines,
calculated as half of those used in the straight segment model,
given by (10). For completely absent limbs, is set to a
null matrix. Note that the admittance matrix for each limb
may become singular on expansion to theth order, due to
the introduction of zero rows and columns associated with the
absent conductors. However, it is easy to prove, taking into
account the junction topology, that the sum of the admittance
matrices for all the limbs associated with the junction is always
a nonsingular matrix.

As before, the coupling with the external environment is
modeled using equivalent voltage sources, which are cal-
culated from the incident voltage pulses and characteristics
admittances of the relevant node’s link and stub lines [5].
A voltage source ( , ) couples with -directed limbs
of the multiconductor junction via an ideal transformer, as
depicted in Fig. 6 for -direction and the source (, ).
This voltage source causes a voltage drop of in the
reference conductor of a multiconductor limb. Voltage can
be obtained from the node’s side of the transformer as

(16)

Since (from transformer rules)

(17)

and

(18)

we can write

(19)

The voltage drop in the reference line affects all other
lines of a multiconductor limb in the same way. This can be
expressed by making use of (19) as

(20)

where is a singular matrix with all elements
equal to and .

Taking into account the voltage drop , we can now write
voltage equations for the two loops of the-directed limbs as

(21)

(22)

which, after substituting using (20) and generalizing for
all directions ( ), can be written as

(23)

(24)
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By introducing further substitutions,

(25)

(26)

(27)

we can rewrite (23) and (24) as

(28)

(29)

Currents on the multiconductors limbs flowing into the
junction are unknown -element vectors, which must satisfy
the current equation for the multipoint junction

(30)

Six loop equations derivable from (28) and (29) for
and the current equation for the junctiongiven by

(30) represent a system of seven simultaneous matrix equations
with seven unknown vectors: , , , , , , and

. It can be solved as follows.
After subtracting (29) from (28), we obtain

(31)

where is an th order unitary matrix. This can be rewritten
as

(32)

where is introduced as

(33)

Adding (29) to (28), we obtain

(34)

By further substituting ( ) from (32) and introducing

(35)

we obtain

(36)

We can now substitute (36) into (30) and obtain

By recalling definitions (27), we rewrite the above equation as

Now introduce matrices as

(37)

(38)

so we have

(39)
Although the individual matrices may be singular, it can

be proven, as in the case ofmatrices, that
is a nonsingular matrix. Thus, we can obtainas

(40)

Combining (32) and (36), the currents flowing into the limbs
are easily obtained as

(41)

(42)

In summary, once is found using (40), we can calculate
and using (27) and, subsequently, and by using

the above two equations. By applying a reverse transformation
matrix onto , we can discard zero elements related to
the nonexisting conductors, thus producing the current vector

with elements consistent with a local labeling scheme
for the particular limb of the junction.

After calculating limb current vectors, the voltage pulses
reflected to vector stub and link lines are easily calculated
(taking into account permutation matrices) as

(43)

(44)

The current flowing through the TLM node’s side of the
transformer where can be found after
generalizing and combining (17) and (18) as

(45)

which is used to update voltage pulses on the ordinary node’s
link and stub lines, following the method described in [5].

IV. NUMERICAL EXAMPLES

In order to test the multiconductor model, we have modeled
a structure with two equipment boxes and connecting wires,
as depicted in Fig. 7. The wires and metal structure form a
coupling mechanism between the four terminations or ports.
By exciting each port one at a time and monitoring the trans-
mitted signal and signal received at each port, a complete 44
scattering matrix can be calculated, which fully characterizes
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Fig. 7. Equipment box four-port structure.

(a)

(b)

Fig. 8. (a) Return at equipment box port 1. (b) Coupling from port 1 at
equipment box to port 4 on metal plate.

the electromagnetic coupling between the two wires on the
metal structure.

Two sets of simulations have been performed, the first using
the new multiconductor model and the second using a very fine
TLM mesh in which the wires and loads are formed from solid
cylindrical blocks of metal. Results are compared in Fig. 8(a)
and (b). An excellent agreement between the two models, over
a wide frequency range can be observed. It should be noted
that the multiconductor model has required almost 60 times
less central processing unit (CPU) time and memory than the
fine mesh model.

As a further test of the multiconductor model, the magnetic
field around a solenoid was simulated. The solenoid was
12-mm long with 6-mm diameter and consisted of 24 turns

Fig. 9. Time response of magnetic field at the solenoid center.

Fig. 10. Distribution of magnetic field at the first resonant frequency on a
longitudinal section through the solenoid.

of 0.125-mm-diameter wire connected across a 330-1-V
source. A regular 1-mm TLM mesh was used, so that on aver-
age the wire passed twice through each cell on its path. Note
that as the wire passes from one layer of TLM cells to the next
layer of cells along the solenoid axis, it effectively branches off
of one loop of multiconductor and onto another. Thus, heavy
use is made of both multiconductor bends and branches.

The computed time-domain magnetic field at the center of
the solenoid is plotted in Fig. 9 (solid line). It exhibits a
very low-frequency resonance and an exponentially decaying
dc component. The resonance corresponds to one wavelength
in the total length of wire in the circuit. This is confirmed
in Fig. 10, which shows the magnetic field at resonance on
a longitudinal section through the solenoid. Applying low-
pass filtering, the resonant component of the field can be
eliminated (Fig. 9, broken line), and the time constant of
the dc component can be estimated. At around 5.54 ns,
this corresponds to an inductance for the solenoid of about
1.83 H—reasonably close to the analytic approximate for the
solenoid (neglecting end-effects) of 1.71H.
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V. CONCLUSION

Vector link lines and vector stub lines have been introduced
in the TLM method to assist the development of a multicon-
ductor model, integrated directly into the TLM time-stepping
procedure. The new multiconductor TLM method allows for a
self-consistent, efficient, and accurate modeling of coupling
between the electromagnetic field and the multiconductor
systems. The method is very general and can model multicon-
ductor junctions, bends, and other complicated multiconductor
configurations, as has been successfully demonstrated. In
comparison to the fine mesh models, savings in computer
resources are between one and two orders of magnitude.

REFERENCES

[1] C. Christopoulos and P. Naylor, “Coupling between electromagnetic
field and multiconductor transmission systems using TLM,”Int. J.
Numer. Modeling,vol. 1, pp. 7–17, 1988.

[2] A. Wlodarczyk and D. P. Johns, “New wire interface for graded 3-D
TLM,” Electron. Lett.,vol. 28, no. 8, pp. 728–729, Apr. 1992.

[3] J. A. Porti, J. A. Morente, M. Khalladi, and A. Gallego, “Comparison
of thin-wire models for TLM method,”Electron. Lett.,vol. 28, no. 20,
pp. 1910–1911, Sept. 1992.

[4] C. R. Paul, Analysis of Multiconductors Transmission Lines.New
York: Wiley, 1994.

[5] V. Trenkic and C. Christopoulos, “An efficient implementation of wire
nodes in TLM,” inProc. 2nd Int. Workshop on Transmission Line Matrix
(TLM) Modeling,Munich, Germany, 1997, pp. 60–67.

A. James Wlodarczyk was born in Bristol, U.K. He received the B.Sc.
degree in electrical engineering and the Ph.D. degree from the University
of Nottingham, Nottingham, U.K., in 1982 and 1988, respectively.

In 1988, he joined KCC Ltd., Nottingham, U.K., where he is currently a
Research and Development Engineer.

Vladica Trenkic (S’92–M’95) was born in
Aleksinac, Yugoslavia, in 1968. He received the
Dipl.-Ing. degree in electrical engineering from the
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