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A Fully Integrated Multiconductor Model for TLM

A. James Wilodarczyk, Vladica Trenki®ember, IEEE,Richard A. Scaramuzza,
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Abstract—A fully integrated model of coupling between the scalar function of time. This terminology is concise and
electromagnetic field and multiconductor cabling is developed helps to distinguish the TLM multiconductor transmission
using the transmission-line matrix (TLM) method. In this model, lines from the multiconductor cables being modeled. We
the multiconductor cables are represented by multiconductor . . .
transmission lines which connect to the general TLM mesh. A QO“S'def the possible .network connections (shunt and se-
basic TLM model of straight multiconductor lines is developed fi€s) between vector lines and between vector and scalar
first, followed by the derivation of a general multiconductor junc-  lines before presenting the integrated TLM multiconductor
tion model suitable for describing more complex configurations. cable model. The development of a basic model of straight
Sample numerical results are presented to confirm validity and multiconductor lines is presented first, followed with the
efficiency of the model. L . L .

derivation of a general multiconductor junction model, which

Index Terms—Multiconductor transmission lines, time-domain  can be used to model more complex configurations found
analysis, transmission-line matrix methods. in practice. Validity, efficiency, and versatility of the new

model are tested by modeling electromagnetic compatibility
I. INTRODUCTION of equipment boxes and the magnetic field around a solenoid.

ERY OFTEN, particularly in electromagnetic compati-
bility studies, there is a need to model multiconduc- Il. BASIC TLM M ULTICONDUCTOR MODEL

tor cables which COUple with the eleCtromagnetiC field. TheA genera| multiconductor line consists of a number of
main difficulty, as far as time-domain transmission-line matrigarallel conductors of arbitrary cross section, but uniform in
(TLM) and finite-difference time-domain (FDTD) method arghe third dimension. The state of an+ 1 conductor line
concerned, is that it can be prohibitively inefficient to modgtarrying TEM or quasi-TEM modes only, and neglecting the
the fine detail of closely spaced conductors in a large volurggmmon mode), can be specified byoltages anch currents
of space such as the interior of an equipment cabinet or roogf.each point along its length. It is convenient to assume that
A common technique used to incorporate multiconduct@fe », voltages, chosen to specify the state of the line, are the
cables into differential time-domain techniques is the sqQpltages ofn of the conductors, with respect to the + 1)th
called separated solution [1], in which the multiconductors afgeference) conductor, while the currents are the currents on
treated separately from the rest of the problem, allowing f@e samen conductors in the direction of propagation. These
field coupling to the wires by introducing equivalent sourcesyrrents and voltages can be represented bytwomponent
derived from a knOW|Edge of the incident field. Although thi@ectorsl I and vV, while the line can be characterized by
method is Simple, it involves several reStI’iCtionS, the mOEbr_unit_|ength Capacitance and inductance matri¢emnd L
important being that any electromagnetic interaction of tilq].
wires with the rest of the structure must be negligibly small. Following the approach used in the TLM model of a

Recently, an integrated solution, allowing for two-wayhin single wire [2], we can assume that one part of the
coupling between the field and single thin wires, has beegquired per-unit-length capacitance and inductance of-an
introduced in the TLM [2], [3]. Here, the propagation ofconductor line is already modeled by the single column of
signals along the wire is modeled by using special Wirg M cells through which it passes. This can be accounted
networks constructed by additional TLM link and stub linegor in a TLM model by placing a fictitious cylinder sheath
Such wire networks are interfaced with the ordinary threground the multiconductor line, which can be taken as the
dimensional condensed TLM nodes during the usual timgsference conductor, @ + 1)th conductor line. Its diameter
stepping procedure. is the effective diameter of a column of metal-filled TLM

In this paper, we extend the TLM integrated thin-wirgells, which is, unfortunately, different for capacitance and
model to allow for mOdeling of multiconductor cables. W@nductance' with the “Capacitance shell” radim@, being
choose to regard the multiconductor transmission lines usgéater than the “inductance shell” radius [2]. Notice that
in the TLM model asvector lines,i.e., lines which carry common-mode currents are accounted for in this model—the
a signal, which is anmn-dimensional vectgrrather than a pody of the TLM mesh refers any distant return paths to the
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Fig. 1. A TLM vector line.

Fig. 3. Series connection of three two-conductor TLM vector lines.

Ua.V2 !
Uy v 2 Combining (1) and (2), we can describe a total voltage vector
1 171 fot Y5 R in terms of incident voltage vectors only as
- I Us V3 . m -1 m
7 | . Viwr = 2(2 Y) >y ©
. i=1 i=1
Y3 =

and, hence, calculate reflected voltage pulses as
Fig. 2. Shunt connection of three two-conductor TLM vector lines.

Vi = Viet — Us for all 4. 4

ductor, andLy, the n x n distributed-inductance matrix for 1he Series _conne.ction between vector lines can be con-
the n-conductor cable placed inside thg radius reference Sucted by using: 1:1 transformers at the end of each line
conductor. Calculation ofy and C, requires solution of a (between the reference conductor and the otheonductors),

two-dimensional electrostatic problem in the cross section § 9iven two conductor ports not sharing the same reference
the multiconductor line. In the general case, this cannot f@nductor, and then series connecting the corresponding ports

done analytically, but well-defined numerical techniques aff @ll the lines. This is shown in Fig. 3 in the case of three
available [4]. vector lines with two conductors. In the general caserof

In order to facilitate integrated modeling of multiconductop-€/€ment vector lines, the total voltage around the junction
structures in the TLM, we need to introduce new TLMS the zero vector, so

elements carrying a signal which isdimensional vector. As ™
explained in Section I, we regard these lines as TLM vector Viee = _(Ui+Vi)=0 (5)
lines (as opposite to ordinary or scalar TLM lines) and they can i=1

be eithervector link linesor vector stub linesAn n-element while the total current around the junction is
TLM vector line (link or stub) is depicted in Fig. 1 and is
characterized by am x n impedance matrixZ (or n x n
adm|ttanf:e !fnatn)Y = Z"'), while its state is described by Combining (5) and (6), we can express total current vector in
elemen_t incident apd reflected voltage p_ulse vedioendV, terms of incident voltage vectors only as
respectively. Possible network connections, shunt and series,
between vector lines can be formulated directly from the first m “tom
principles. Tior =2 <Z Zi) dU; (7)

The shunt connection betweenelement vector lines can i=1 i=1
be physically constructed by connectingorresponding con- and, hence, calculate reflected voltage pulses as
ductors inn junction points and having all vector lines sharing
the same reference conductor. This is shown in Fig. 2 in the Vi=Ui = Ziltox, for all . (8)

case of three two-element vector lines. In the general case of . principal TLM model of a segment of-conductor

m n-element vector lines (labeled by=1---m), the total .0 s shown in Fig. 4. The cable and enclosing fictitious
current into the junction must be the zero vector, i.e., cylinder sheath form afin + 1)-conductor transmission line,
which is modeled using a circuit af-element vector lines.
m The cable is coupled to the external environment at the center
Lot = ZY;(Ui -V)=0 (1) of each TLM cell by a break in the sheath. The vector link
i=1 lines of the impedance matri¥,, can be chosen to model the
total required capacitance of the wire segment of leniyth

To preserve the time synchronism of the TLM pulses imposed

while the total voltage at the junction is the sum of incidergy the time stepAf, we must haveli,, = CuAx = Z. 1At
and reflected voltages which gives ' © W

Lot =Yi(U; = V5),  foralli. (6)

At
Zp =—C7". 9
Vit = U; + Vi, for all 4. 2) N ©
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The inductance modeled by the vector link lingg At : ) —— l
is normally insufficient [2], and a vector inductance stub of I T !
the impedanceZ;, connected in series to vector link lines, is . R .
required to make up the required total inductance given by © )
Liot = LyAz = Z,At + Z, ﬁ Fig. 5. Possible multiconductor configurations. (a) Multiconductor bend. (b)
2 Branching-off. (c) Three T-junctions. (d) Combined T-junction, straight wire,

from which it follows that termination, and bend.

Az
Zs = 2<Ld At Z’“’)' (10) Finally, the current flowing through the reference conductor
The n-element vector inductance stub is not shown in tHé = _.1"‘,““ 1S useq to update_ voltage pulses on the or(_jlnary
diagram due to the difficulty of drawing multiconductor serie@Ode link and stub lines, following the method described in [5].
connections.

It can be seen from Fig. 4 that the coupling between the m
multiconductor cable model and the external environment is
modeled using a voltage source in the reference line. Theln Many situations, the model of straight multiconductor
voltage source represents the electric-field component couplfPles. described in Section I, may not be sufficient. Exam-
with the multiconductor cable. Its amplitude, and the Ples of when a more general model is required are shown
resistance,, can be calculated from the incident voltage pulsd8 Fig. 5. They include multiconductor bends, branching-off

and characteristics admittances of the relevant node’s link a#Rnfigurations, multiconductor junction connections, discon-
stub lines [5]. tinuation of some conductors or even arbitrary combinations of

It is noted that the current in the reference condugtor these features. As before, when modeling these configurations
is minus the sum of the currents in the other conductors, i.8SiNg the TLM, there will always be a common reference
is = —13 110, Wherel, is the single row matrix1, 1, - -, 1) conductor—fictitious cylinder—which divides and follows ev-
and I is the current through vector link lines. Similarly, theSy multiconductor branch. This makes it possible to devise
voltage dropv,, on the reference conductor affects equall 9eneral multiconductor junction model based on the shunt
all the other lines, which can be described¥as = 1,v;,, Cconnection of vector lines.

where 1, is the single-column matrix, the transpose 1f In a general multiconductor junction configuration there will
Sincewv,, = u, + zyi, andi, = —1;,1,;, We write be N junction points, wheréV is regarded as the order of the

junction. In Fig. 5, we haveV = 3 for (a)-(c) andN = 4
Vie = Lotz — Lozelidior = Us — ZoTsor for (d). Every junction point may connect up to six single
which implies that a source in the reference line is equivaleg@nductors coming from six different faces of a rectangular
to a vector source of/, = 1,u, and impedance matrix Cell, referred to as “multiconductor limbs.” A junction must
Z, = 1,2,1;, connected in series with the other vector linede described byv-element vectors and matrices of si¥e< V.
(Note thatl/, is a vector with all elements equal ig, and However, quantities local to a particular limb, such as incident
Z, is a singular matrix with all elements equal 49.) voltages and impedance matrices of the vector link lines, may
Therefore, the model depicted on Fig. 4 can be realized @&eady be described by vectors and matrices of ondsr.v,
a series connection of four vector lines (two link lines, a studheren represents the number of conductors actually present
and a source). Using (7), we can exprdss, in terms of in that limb. The relative numbering of conductors local to a
incident voltage pulses as particular limb may, therefore, differ from that used for the
_ junction as a whole. Thus, to obtain junction quantities of
Lot = 2220 + Zs + Za) 7 (Un = U= Us + Ua). the order N, we need to reorder rows/columns of the local
Using (8), voltage pulses reflected to the vector link lingg ( limb quantities and insert zeros in the rows/columns related
and V;) and the vector stub linglf) are calculated as to the nonexisting conductors. Such a transformation can be
Vi U — 21 (11) accomphshed by using a limb permutatlon_ matfixof size
T Fh T Awltot N x n, which contains element®[:, j] = 1 if the jth limb
Vi=Ui+ Zylior (12)  conductor connects to thigh junction point, andP[i, j] = 0
Ve=Us+ Zs1ior- (13) otherwise. A permutation matri¥ must satisfyP? P = F,

. TLM M ULTICONDUCTOR JUNCTION MODEL
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e 3 oy The corresponding limb admittance matridég are defined
_______ _i_|*1l as
e N———— T B
1/ \I Y;k = Pck(chk + Zsck) 1P£ (15)
b lz where Z,. are impedance matrices of vector link lines,
which are calculated as in the straight segment model, using
1%

(9), while Z,;, are impedance matrices of vector stub lines,
calculated as half of those used in the straight segment model,
given by (10). For completely absent limbg,; is set to a
null matrix. Note that the admittance matrix for each limb
may become singular on expansion to tN¢h order, due to
the introduction of zero rows and columns associated with the
absent conductors. However, it is easy to prove, taking into
account the junction topology, that the sum of the admittance
= matrices for all the limbs associated with the junction is always

: a nonsingular matrix.

|

I

As before, the coupling with the external environment is
modeled using equivalent voltage sources, which are cal-
culated from the incident voltage pulses and characteristics
@dmittances of the relevant node’s link and stub lines [5].
A voltage source #, zr) couples with k-directed limbs
of the multiconductor junction via an ideal transformer, as
where P* is a transpose of” and E is a unitary matrix of depicted in Fig. 6 forz-direction and the sourceuf, z).
size n x n. This voltage source causes a voltage dropugf/2 in the

In general, the transformation of a vectarof sizen x 1 is  reference conductor of a multiconductor limb. Voltage can

performed by multiplying it with a permutation matri (size be obtained from the node’s side of the transformer as
N x n) to obtain an expanded vectdtA of the size/N x 1.

Fig. 6. Thevenin equivalent of multiconductor junction in the TLM (only
loop corresponding to limbs in the-direction is shown ).

The original vectorA is restored from the expanded one by Ute = Up T+ Zala- (16)
multiplying it with P*, i.e., PY(PA) = (PYP)A = A. A Since (from transformer rules)
matrix M of size n x n can be transformed to & x N 1
matrix by applyingPMPT. The original matrix is restored tx = =(lgha — tgiz) a7)
from the expanded form by applying a reverse transformation, 2
ie., PT(PMPT)P = (PTP)M(PTP) = M. and

The Thevenin equivalent of a general multiconductor junc- igle = 1301, ighe = =111 (18)
tion model is shown in Fig. 6. For simplicity, only part of
the circuit, corresponding to the limbs in thedirection, we can write
is shown. This subcircuit is connected to the other two T +Z—’”1, (Iiw — Ina) (19)
similar subcircuits, fory and z-directed limbs, via a multipoint A I

junction, which is denoted by. A transformer is introduced The voltage dropy,, /2 in the reference line affects all other

into each subcircuit to permit connection of the referengges of a multiconductor limb in the same way. This can be
conductors at the center of the TLM node. The limbs agpressed by making use of (19) as

denoted by two letters, the first)(indicating whether the

limb is associated with the highek) or lower () value of the Ve = Lyte = U + 1 Zo(Iie — Ins) (20)
coordinate axis, and the secof)) indicating the coordinate 2 2 4
axis, i.e.k € {z, vy, z}. where Z, = 1,z,1;, is a singular matrix with all elements

In the model from Fig. 6, every multiconductor limb isequal toz, and U, = 1,u,. _
represented by the combination of vector link line and a vector Taking into account the voltage drdfy.., we can now write
stub line, connected in series, and is described by a sinyRitage equations for the two loops of thedirected limbs as

Thevenin equivalent circuit, (e.gl/;., Yz..). The equivalent Yio (Ui — Viw — V) = L1 1)
limb voltage vectors are then defined as T - B
Y}Lac(Uhac + vaa; - V) :Iiwv (22)
Uek = Per(2Uek + 2Usck) (14)  which, after substituting/,,. using (20) and generalizing for
all directions ¢ — k), can be written as
with indexesc € {h, I}, k € {z, v, #}, and wherel/,,.;, are U, 1
incident voltage pulses from vector link linds,.;, are incident ~ Yi <Ulk -5 V) =1+ YiZ(Ie — Ing)  (23)

voltage pulses from vector stub lines, aRg, are permutation

matrices discussed above. For completely absent lifbs, vy, <Uhk + Uk _ V) =L+ thka(Ihk —In). (24)
is set to a null vector. 2 4
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By introducing further substitutions, Now introduce B matrices as
Wik = Ui + Ui /2 (26) Bur =(E + Ax)Yn (38)
T =Yu(Wa = V),  ce{l,h} 27) <o we have
we can rewrite (23) and (24) as
1 Z (BuWi + BuWhi) = Z (B + Bui) | V.
Jiw =TIy + ZYlka(Ilk — Ink) (28)  k=zy,- k= y, 2
1 (39)
I = Ink + ZthZk(Ihk — Inp). (29) Although the individual matrice® may be singular, it can

be proven, as in the case Bfmatrices, thab_, . , (B +

Currents on the multiconductors limbs f|0W|ng into th%hk) is a nonsingu'ar matrix. ThUS, we can obtainas
junction are unknownV-element vectors, which must satisfy

the current equation for the multipoint junctioh -

V= (B + Brr)
Z (L. + Inx) = 0. (30) k—%:y,z
k=x,y, z
Six loop equations derivable from (28) and (29) fere - Z (BuWu. + BrWhre) |- (40)
{z, y, z} and the current equation for the junctigngiven by k=x,y, 2

(30) represent a system of seven simultaneous matrix equation
with seven unknown vectordy., Ine, L1y, Iy, Liz, 1., and
V. It can be solved as follows.

After subtracting (29) from (28), we obtain

Eombining (32) and (36), the currents flowing into the limbs
are easily obtained as

1 1
Iy, = §(E + Ch — Ap)Ju + §(E - Cp+ A (41)
1
_ — il _ 1 1
ik = e = | B+ 4(Ylk + V)2 | (e = Ine) - (31) Dy = §(E + Cr + Ap)J + §(E = O — A)Ju. (42)

whereE is an Nth order unitary matrix. This can be rewritten In summary, oncé’ is found using (40), we can calculate
as Ji, andJy,, using (27) and, subsequentlly, andi;,; by using
the above two equations. By applying a reverse transformation

T = e = CnCJe = Jur) (32) " matrix PZ onto 1.4, we can discard zero elements related to
where C;, is introduced as the nonexisting conductors, thus producing the current vector
L Pi]ck with elements consistent with a local labeling scheme
1 B for the particular limb of the junction.
Cr= |E+ =Y +Yu)Zr| . 33 L
b + 4( we o+ Yow) Zi (33) After calculating limb current vectors, the voltage pulses

reflected to vector stub and link lines are easily calculated

Adding (29) to (28), we obtain (taking into account permutation matrices) as

1
Jue + I = D + I + Z(Ylk — Yur) Zi(Din — Ink). (34) Viek = Uwere — Zwer Ph 1, (43)

o _ T
By further substituting {, — %) from (32) and introducing Vook = Usck = Zoer Lo Lok (44)

1 The current flowing through the TLM node’s side of the
Aw = 3 (Y = Yir) 23O, (35) transformeri, where k € {z, v, z} can be found after
) generalizing and combining (17) and (18) as
we obtain
o Lk — D) 45
I+ I = (B — Ax)Ju + (B + Ar) . (36) T T (45)
We can now substitute (36) into (30) and obtain which is used to update voltage pulses on the ordinary node’s

link and stub lines, following the method described in [5].
> (E = AJu + (E + Ax)dui] = 0.

k=, y, 2

IV. NUMERICAL EXAMPLES
By recalling definitions (27), we rewrite the above equation as | order to test the multiconductor model, we have modeled
a structure with two equipment boxes and connecting wires,
k_z >[(E — AR)Yu W + (B + Ax)Yi W] as depicted in Fig. 7. The wires and metal structure form a
s coupling mechanism between the four terminations or ports.
By exciting each port one at a time and monitoring the trans-
= Z (£ — Ax)Ya + (B + Ax)Yur] 0V mitted signal and signal received at each port, a completél4
h=z,y, scattering matrix can be calculated, which fully characterizes
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Fig. 7. Equipment box four-port structure.
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Fig. 9. Time response of magnetic field at the solenoid center.
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g‘ 1 Fig. 10. Distribution of magnetic field at the first resonant frequency on a
O -40F - longitudinal section through the solenoid.
“45: 1 L 1 L 1 1
o0 02 l.oFrequeri(.j/ [GHZ]Z.O >3 0 of 0.125-mm-diameter wire connected across a 230-V
) source. A regular 1-mm TLM mesh was used, so that on aver-

age the wire passed twice through each cell on its path. Note
hat as the wire passes from one layer of TLM cells to the next
layer of cells along the solenoid axis, it effectively branches off
of one loop of multiconductor and onto another. Thus, heavy
the electromagnetic coupling between the two wires on tQ@e is made of both multiconductor bends and branches.
metal structure. The computed time-domain magnetic field at the center of

Two sets of simulations have been performed, the first usiige solenoid is plotted in Fig. 9 (solid line). It exhibits a
the new multiconductor model and the second using a very figery low-frequency resonance and an exponentially decaying
TLM mesh in which the wires and loads are formed from solidc component. The resonance corresponds to one wavelength
cylindrical blocks of metal. Results are compared in Fig. 8(#) the total length of wire in the circuit. This is confirmed
and (b). An excellent agreement between the two models, owerFig. 10, which shows the magnetic field at resonance on
a wide frequency range can be observed. It should be notedongitudinal section through the solenoid. Applying low-
that the multiconductor model has required almost 60 timeass filtering, the resonant component of the field can be
less central processing unit (CPU) time and memory than tekminated (Fig. 9, broken line), and the time constant of
fine mesh model. the dc component can be estimated. At around 5.54 ns,

As a further test of the multiconductor model, the magnetibis corresponds to an inductance for the solenoid of about
field around a solenoid was simulated. The solenoid was33;H—reasonably close to the analytic approximate for the
12-mm long with 6-mm diameter and consisted of 24 turrsolenoid (neglecting end-effects) of 1.7ZH.

Fig. 8. (a) Return at equipment box port 1. (b) Coupling from port 1
equipment box to port 4 on metal plate.
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V. CONCLUSION

Vector link lines and vector stub lines have been introduct
in the TLM method to assist the development of a multicor
ductor model, integrated directly into the TLM time-steppin
procedure. The new multiconductor TLM method allows for
self-consistent, efficient, and accurate modeling of couplir
between the electromagnetic field and the multiconduc
systems. The method is very general and can model multic
ductor junctions, bends, and other complicated multiconductor
configurations, as has been successfully demonstrated. In
comparison to the fine mesh models, savings in computer
resources are between one and two orders of magnitude.
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